Despite decades of innovation in fabrics with high-tech thermal properties that keep marathon runners cool or alpine hikers warm, there has never been a material that changes its insulating properties in response to the environment. Until now.

 

University of Maryland researchers have created a fabric that can automatically regulate the amount of heat that passes through it. When conditions are warm and moist, such as those near a sweating body, the fabric allows infrared radiation (heat) to pass through. When conditions become cooler and drier, the fabric reduces the heat that escapes. The development was reported in the February 8, 2019 issue of the journal Science.

 

Sourced through Scoop.it from: www.umdrightnow.umd.edu

Advance marks critical step toward brain-computer interfaces that hold immense promise for those with limited or no ability to speak.

 

In a scientific first, Columbia neuroengineers have created a system that translates thought into intelligible, recognizable speech. By monitoring someone’s brain activity, the technology can reconstruct the words a person hears with unprecedented clarity. This breakthrough, which harnesses the power of speech synthesizers and artificial intelligence, could lead to new ways for computers to communicate directly with the brain. It also lays the groundwork for helping people who cannot speak, such as those living with as amyotrophic lateral sclerosis (ALS) or recovering from stroke, regain their ability to communicate with the outside world.

 

Sourced through Scoop.it from: zuckermaninstitute.columbia.edu

Why your brain is like an ant colony: they both get wiser and more stable by using collective memory for learning.

 

Like a brain, an ant colony operates without central control. Each is a set of interacting individuals, either neurons or ants, using simple chemical interactions that in the aggregate generate their behaviour. People use their brains to remember. Can ant colonies do that? This question leads to another question: what is memory?

 

 

 

Sourced through Scoop.it from: aeon.co

Plants have no eyes, no ears, no mouth and no hands. They do not have a brain or a nervous system. Muscles? Forget them. They’re stuck where they started, soaking up the sun and sucking up nutrients from the soil. And yet, when something comes around to eat them, they sense it.

And they fight back.

Sourced through Scoop.it from: www.nytimes.com

Cave-inhabiting animals are often categorized as troglobites (cave-limited species), troglophiles (species that can live their entire lives in caves, but also occur in other environments), trogloxenes (species that use caves, but cannot complete their life cycle fully in caves) and accidentals (animals not in one of the previous categories). Some scientists use a separate terminology for aquatic forms (e.g., stygobitesstygophiles, and stygoxenes).

 

 

Sourced through Scoop.it from: theconversation.com

Most of Earth’s essential elements for life—including most of the carbon and nitrogen in you—probably came from another planet.

 

Earth’s status as the only life-sustaining planet is a result of the timing and delivery mechanism of carbon (C), nitrogen (N), sulfur (S), and hydrogen (H). On the basis of their isotopic signatures, terrestrial volatiles are thought to have derived from carbonaceous chondrites, while the isotopic compositions of nonvolatile major and trace elements suggest that enstatite chondrite–like materials are the primary building blocks of Earth. However, the C/N ratio of the bulk silicate Earth (BSE) is superchondritic, which rules out volatile delivery by a chondritic late veneer. In addition, if delivered during the main phase of Earth’s accretion, then, owing to the greater siderophile (metal loving) nature of C relative to N, core formation should have left behind a subchondritic C/N ratio in the BSE.

Sourced through Scoop.it from: phys.org