Essential terminology every ChatGPT user should understand

Your initial encounter with AI might have introduced you to ChatGPT, the OpenAI AI-chatbot with an astonishing ability to answer a wide array of questions. From crafting poems and resumes to concocting fusion recipes, the prowess of ChatGPT has been likened to a turbocharged autocomplete feature.

Yet, AI chatbots are just a fraction of the broader AI landscape. While it’s impressive to have ChatGPT assist with homework or watch Midjourney generate captivating mech images inspired by their country of origin, the potential of AI extends far beyond. This potential, valued at approximately $4.4 trillion annually for the global economy by the McKinsey Global Institute, underscores the growing significance of artificial intelligence.

As society becomes increasingly intertwined with AI, novel terms are cropping up everywhere. Whether you’re aiming to engage in intelligent conversations or excel in a job interview, acquainting yourself with these essential AI terms is crucial.

Artificial General Intelligence (AGI): A concept alluding to a more advanced AI version than what currently exists, capable of outperforming humans in tasks while also enhancing its own capabilities.

AI Ethics: Principles designed to prevent AI from causing harm to humans, often achieved through determining how AI systems should handle data collection and address bias.

AI Safety: An interdisciplinary field focused on the long-term consequences of AI and the potential rapid emergence of super-intelligent AI that could pose risks to humanity.

 

Algorithm: A set of instructions enabling a computer program to learn from and analyze data, aiding in recognizing patterns and autonomously completing tasks.

Alignment: Adjusting AI to achieve desired outcomes, spanning from moderating content to promoting positive human interactions.

Anthropomorphism: The tendency to attribute human-like attributes to non-human entities. In the context of AI, this refers to perceiving chatbots as more human-like and aware than they truly are.

Artificial Intelligence (AI): The utilization of technology to simulate human intelligence, either within computer programs or robotics. A computer science field dedicated to developing systems capable of human-like tasks.

 

Bias: In relation to large language models, inaccuracies stemming from training data that lead to false associations between certain characteristics and specific groups.

Chatbot: A program that interacts with humans through text, mimicking human language.

ChatGPT: An AI chatbot developed by OpenAI employing extensive language model technology.

Cognitive Computing: A synonym for artificial intelligence.

Data Augmentation: The process of remixing existing data or introducing a diverse dataset to train AI models.

Deep Learning: A subset of machine learning involving intricate patterns recognition in visuals, audio, and text using multiple parameters. Inspired by the human brain, it employs artificial neural networks to detect patterns.

Diffusion: A machine learning technique introducing random noise to existing data, often used to train models to recreate or recover input data.

 

Emergent Behavior: Instances where an AI model demonstrates unexpected abilities.

End-to-End Learning (E2E): A deep learning approach where a model learns to perform a task in its entirety, solving the problem holistically.

Ethical Considerations: An awareness of the ethical implications and concerns related to AI, encompassing privacy, data usage, fairness, misuse, and safety issues.

Foom (Fast Takeoff): The notion that AGI development might advance too swiftly to a point where humanity’s safety could be compromised.

 

Generative Adversarial Networks (GANs): AI models composed of two neural networks – a generator and a discriminator – creating and validating new data, respectively.

Generative AI: Technology utilizing AI to craft content like text, videos, code, or images by discerning patterns and generating original responses.

Google Bard: A Google AI chatbot similar to ChatGPT, but it extracts information from current web sources while ChatGPT is limited to data until 2021 and lacks internet connectivity.

Guardrails: Policies and constraints imposed on AI models to ensure responsible data handling and prevent the generation of disturbing content.

Hallucination: Incorrect AI responses, including generative AI producing confident but erroneous answers.

Large Language Model (LLM): An AI model trained on extensive text data to comprehend language and generate human-like content.

Machine Learning (ML): An AI component allowing computers to learn and predict outcomes without explicit programming, often paired with training sets to generate fresh content.

Microsoft Bing: Microsoft’s search engine employing AI-powered search results similar to Google Bard, connected to the internet.

Multimodal AI: AI capable of processing diverse inputs such as text, images, videos, and speech.

Natural Language Processing: A branch of AI utilizing machine learning and deep learning to enable computers to comprehend human language, often employing learning algorithms, statistical models, and linguistic rules.

Neural Network: A computational model mirroring the human brain’s structure, designed to identify data patterns. Comprising interconnected nodes or neurons, it evolves with time.

Overfitting: A machine learning error when a model closely mirrors training data but struggles with new data.

Parameters: Numerical values shaping the behavior and structure of LLMs, facilitating predictions.

Prompt Chaining: AI’s ability to leverage previous interactions for context in future responses.

Stochastic Parrot: An analogy illustrating that LLMs lack a comprehensive understanding of language’s meaning and context, akin to a parrot mimicking words without grasping their significance.

Style Transfer: The process of adapting one image’s style to another’s content, enabling AI to apply visual attributes from one image to another.

Temperature: Parameters influencing the randomness of language model output. Higher values yield more daring responses.

Text-to-Image Generation: Producing images based on textual descriptions.

Training Data: Datasets utilized to educate AI models, encompassing text, images, code, and data.

Transformer Model: A deep learning model learning context by deciphering relationships within data, like sentences or image components. Unlike sequential analysis, it comprehends context holistically.

Turing Test: Evaluates a machine’s human-like behavior, passing if humans can’t distinguish its responses from humans’.

Weak AI (Narrow AI): AI focused on specific tasks, unable to surpass its designated skill set. Most contemporary AI falls into this category.

Zero-Shot Learning: A test requiring a model to complete tasks without specific training data, e.g., recognizing a lion based on knowledge of tigers.

Read the full article at: www.weeklyblitz.net

China Builds Exascale Supercomputer with 19.2 Million Cores

 

National Supercomputing Center in Wuxi builds a yet another supercomputer that claims exascale performance. After the U.S. government imposed crippling sanctions against select Chinese high-tech and supercomputer companies through 2019 and 2020, firms like Huawei had to halt chip development; it is impossible to build competitive processors without access to leading-edge nodes. But Jiangnan Computing Lab, which develops Sunway processors, and National Supercomputing Center in Wuxi kept building new supercomputers and recently even submitted results of their latest machine for the Association for Computing Machinery’s Gordon Bell prize.

 

The new Sunway supercomputer built by the National Supercomputing Center in Wuxi (an entity blacklisted in the U.S.) employs around feature approximately 19.2 million cores across 49,230 nodes, reports Supercomputing.org. To put the number into context, Frontier, the world’s highest-performing supercomputer, uses 9472 nodes and consumes 21 MW of power. Meanwhile, the National Supercomputing Center in Wuxi does not disclose power consumption of its latest system.

 

Read the full article at: www.tomshardware.com

How long until a robot is doing your chores?

Advances in AI are accelerating the development of humanoid robots.

Imagine the biggest market for a physical product you can. Are you thinking of mobile phones? Cars? Property?

They are all chunky markets but in the coming decades a new product will be rolled out that will dwarf those giants, says Geordie Rose, the chief executive of Sanctuary AI.

The Vancouver-based firm is developing a humanoid robot called Phoenix which, when complete, will understand what we want, understand the way the world works and have the skills to carry out our commands.

Read the full article at: www.bbc.com

What is a Vector Database? Vector Databases Explained – AWS

Information comes in many forms. Some information is unstructured—like text documents, rich media, and audio—and some is structured—like application logs, tables, and graphs. Innovations in artificial intelligence and machine learning (AI/ML) have allowed us to create a type of ML model—embedding models. Embeddings encode all types of data into vectors that capture the meaning and context of an asset. This allows us to find similar assets by searching for neighboring data points. Vector search methods allow unique experiences like taking a photograph with your smartphone and searching for similar images. 

Read the full article at: aws.amazon.com

100+ Best Midjourney Prompts For Realism And Realistic Photos

Creating a realistic photo is not easy. You need to know the rules of design and have good examples to guide you. One method for designing realistic images is Midjourney AI. However, it’s important to be skilled at coming up with ideas and have a list of prompts for realistic portraits design. If you’re new to Midjourney or struggling with realistic photos creation, don’t worry! This blog article has everything you need, including the best Midjourney prompts for realism and ultra realism photos design.

 

In this blog post, 100+ of the best Midjourney prompts for realistic photos design and creation are being shared. You can also find some examples of photographs that have already been created using the below given prompts. These prompts are designed to inspire your imagination and help you get better at designing realistic images.

Read the full article at: www.theinsaneapp.com

Neurotoxin-laden poisonous bird discovered in New Guinea’s rain forest

 

The poisonous birds inhabit one of Earth’s most pristine rainforests, a place as exotic as no other in the world. Hearing the words poisonous and bird coupled will be an eye-opener for most. But poisonous birds actually exist. And now, more species have been discovered in New Guinea’s jungles.

“We managed to identify two new species of poisonous birds on our most recent trip. These birds contain a neurotoxin that they can both tolerate and store in their feathers,” says Knud Jønsson of the Natural History Museum of Denmark.

Jønsson and fellow UCPH researcher, Kasun Bodawatta have been on an Indiana Jones-like research trip, risking life and limb to regularly warring tribespeople and ex-cannibals amidst the jaw-dropping biodiversity of New Guinea’s rainforest. Here they captured two new bird species, each of which has developed the ability to consume toxic food and turn that into a poison of their own.

The other new poisonous bird discovered is the The regent whistler (Pachycephala schlegelii). The two birds that the researchers discovered to be poisonous are the regent whistler (Pachycephala schlegelii), a species that belongs to a family of birds with a wide distribution and easily recognizable song well-known from across the Indo-Pacific region, and the rufous-naped bellbird (Aleadryas rufinucha).

Read the full article at: science.ku.dk

Novel Covid vaccines effective against Eris and Fornax variants

 

Moderna’s newest vaccine and new shots from Pfizer and Novavax are slated to roll out within weeks, pending potential approvals from the Food and Drug Administration.

 

Moderna’s newest Covid vaccine generated a robust immune response against the now-dominant Eris variant and another rapidly spreading strain of the virus in an early clinical trial, the biotech company recently stated. The updated shot is designed to target omicron subvariant XBB.1.5, but the results suggest that the injection may still be effective against newer variants of the virus that are gaining ground nationwide. That includes Eris and another variant nicknamed Fornax, both of which are also descendants of the omicron virus variant.

 

Read the full article at: www.cnbc.com