A new database and searchable tool reveals more than 90,000 known materials with electronic properties that remain unperturbed in the face of disruption.
Topology stems from a branch of mathematics that studies shapes that can be manipulated or deformed without losing certain core properties. A donut is a common example: If it were made of rubber, a donut could be twisted and squeezed into a completely new shape, such as a coffee mug, while retaining a key trait — namely, its center hole, which takes the form of the cup’s handle. The hole, in this case, is a topological trait, robust against certain deformations.
In recent years, scientists have applied concepts of topology to the discovery of materials with similarly robust electronic properties. In 2007, researchers predicted the first electronic topological insulators — materials in which electrons that behave in ways that are “topologically protected,” or persistent in the face of certain disruptions.
Since then, scientists have searched for more topological materials with the aim of building better, more robust electronic devices. Until recently, only a handful of such materials were identified, and were therefore assumed to be a rarity. Now researchers at MIT and elsewhere have discovered that, in fact, topological materials are everywhere, if you know how to look for them.
In a paper published today in Science, the team, led by Nicolas Regnault of Princeton University and the École Normale Supérieure Paris, reports harnessing the power of multiple supercomputers to map the electronic structure of more than 96,000 natural and synthetic crystalline materials. They applied sophisticated filters to determine whether and what kind of topological traits exist in each structure.
Overall, they found that 90 percent of all known crystalline structures contain at least one topological property, and more than 50 percent of all naturally occurring materials exhibit some sort of topological behavior. “We found there’s a ubiquity — topology is everywhere,” says Benjamin Wieder, the study’s co-lead, and a postdoc in MIT’s Department of Physics.
The team has compiled the newly identified materials into a new, freely accessible Topological Materials Database resembling a periodic table of topology. With this new library, scientists can quickly search materials of interest for any topological properties they might hold, and harness them to build ultra-low-power transistors, new magnetic memory storage, and other devices with robust electronic properties.