Pioneers of mRNA COVID Vaccines Win Nobel Prize for Medicine

 

Katalin Karikó and Drew Weissman laid the groundwork for immunizations that were rolled out during the pandemic at record-breaking speed. This year’s Nobel Prize in Physiology or Medicine has been awarded to biochemist Katalin Karikó and immunologist Drew Weissman for discoveries that enabled the development of mRNA vaccines against COVID-19. The vaccines have been administered more than 13 billion times, saved millions of lives and prevented millions of cases of severe COVID-19, said the Nobel committee. Karikó, who is at Szeged University in Hungary, and Weissman, at the University of Pennsylvania in Philadelphia (UPenn), paved the way for the vaccines’ development by finding a way to deliver genetic material called messenger RNA into cells without triggering an unwanted immune response. They will each receive an equal share of the prize, which totals 11 million Swedish krona (US$1 million). Karikó is the 13th female scientist to win a Nobel Prize in medicine or physiology. She was born in Hungary, and moved to the United States in the 1980s. “Hopefully, this prize will inspire women and immigrants and all of the young ones to persevere and be resilient. That’s what I hope,” she tells Nature.

 

https://doi.org/10.1038/d41586-023-03046-x

Read the full article at: www.nature.com

‘Remarkable’ AI Tool Designs mRNA Vaccines that are More Potent and Stable

Software from Baidu Research yields jabs for COVID that have greater shelf stability and that trigger a larger antibody response in mice than conventionally designed shots. An artificial intelligence (AI) tool that optimizes the gene sequences found in mRNA vaccines could help to create jabs with greater potency and stability that could be deployed across the globe. Developed by scientists at the California division of Baidu Research, an AI company based in Beijing, the software borrows techniques from computational linguistics to design mRNA sequences with more-intricate shapes and structures than those used in current vaccines. This enables the genetic material to persist for longer than usual. The more stable the mRNA that’s delivered to a person’s cells, the more antigens are produced by the protein-making machinery in that person’s body. This, in turn, leads to a rise in protective antibodies, theoretically leaving immunized individuals better equipped to fend off infectious diseases. What’s more, the enhanced structural complexity of the mRNA offers improved protection against vaccine degradation. During the COVID-19 pandemic, mRNA-based shots against the SARS-CoV-2 coronavirus famously had to be transported and kept at temperatures below –15°C to maintain their stability. This limited their distribution in resource-poor regions of the world that lack access to ultracold storage facilities. A more resilient product, optimized by AI, could eliminate the need for cold-chain equipment to handle such jabs. The new methodology is “remarkable”, says Dave Mauger, a computational RNA biologist who previously worked at Moderna in Cambridge, Massachusetts, a maker of mRNA vaccines. “The computational efficiency is really impressive and more sophisticated than anything that has come before.”

 

Research Cited published in Nature (May 2, 2023):

https://doi.org/10.1038/s41586-023-06127-z 

 

Read the full article at: www.nature.com