In ‘Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration,’ researchers examine how to make complex, stable scaffolds based on β-tricalcium. Typically, there are obstacles to finding materials and techniques suitable for creating structures capable of sustaining cell life.

 

The authors are aware of the necessities in tissue engineering: the material cannot be toxic, obviously, as that would cause further health issues in a patient, biodegradability is key, with the material being absorbed along with suitable bone growth, and porosity and density must be suitable too, balanced out with proper strength.

 

DLP 3D printing has proven successful for creating scaffolds due to comprehensive irradiation over the whole cross-section, and shorter processing times in comparison to other processes. The researchers focused on DLP 3D printing for this study, in relation to the use of calcium phosphate structures that are not only complex and high resolution but also strong. The team assessed both rectilinear grid structure and hexagonal geometries (at 50 and 75 percent porosity) for mechanical properties, with complete chemical analyses performed before and after bioprinting.

Sourced through Scoop.it from: 3dprint.com

Imagine a bottle of laundry detergent that can sense when you’re running low on soap—and automatically connect to the internet to place an order for more.

 

 

University of Washington researchers are the first to make this a reality by 3-D printing plastic objects and sensors that can collect useful data and communicate with other WiFi-connected devices entirely on their own.

 

 

Sourced through Scoop.it from: phys.org

University of Toronto researchers have developed a handheld 3D skin printer that deposits even layers of skin tissue to cover and heal deep wounds. The team believes it to be the first device that forms tissue in situ, depositing and setting in place, within two minutes or less.

 

The research, led by PhD student Navid Hakimi under the supervision of Associate Professor Axel Guenther of the Faculty of Applied Science & Engineering, and in collaboration with Dr. Marc Jeschke, director of the Ross Tilley Burn Centre at Sunnybrook Hospital and professor of immunology at the Faculty of Medicine, was recently published in the journal Lab on a Chip.

 

For patients with deep skin wounds, all three skin layers – the epidermis, dermis and hypodermis – may be heavily damaged. The current preferred treatment is called split-thickness skin grafting, where healthy donor skin is grafted onto the surface epidermis and part of the underlying dermis.

 

Split-thickness grafting on large wounds requires enough healthy donor skin to traverse all three layers, and sufficient graft skin is rarely available. This leaves a portion of the wounded area “ungrafted” or uncovered, leading to poor healing outcomes.

Sourced through Scoop.it from: www.utoronto.ca

New advances in 3D printing are making it not only possible but also viable to manufacture cheap, print-on-demand, disposable drones designed simply to soar off over the horizon and never come back. Some British engineers did just that, and this is only the beginning. The team hails from the Advanced Manufacturing Research Center (AMRC) at the University of Sheffield, where they’re exploring innovative ways to 3D-print complex designs. They built their disposable drone, a five-foot-wide guy made of just nine parts that looks like a tiny stealth bomber, using a technique called fused deposition modeling. This additive manufacturing technique has been around since the 1980s but has recently become faster and cheaper thanks to improved design processes.

The ultimate vision, as sUAS describes it, is for “cheap and potentially disposable UAVs that could be built and deployed in remote situations potentially within as little as 24 hours.” Forward-operating teams equipped with 3D printers could thus generate their own semi-autonomous micro air force squadrons or airborne surveillance swarms, a kind of first-strike desktop printing team hurling disposable drones into the sky.

For now, the AMRC team’s drone works well as a glider, and they’re working on a twin ducted fan propulsion system. It will eventually get an autonomous operation system powered by GPS as well as on-board data logging of flight parameters. Presumably, someone will want to stick a camera on there, too. If they’re successful at building these things cheaply enough, it will be a green flag for the rest of the industry to take a hard look at their designs and see if they can make a disposable drone, too.

Source: www.amrc.co.uk