Lucy in the Sky: The Universe’s Largest Diamond is a White Dwarf Star

The largest diamond ever found is not on Earth, but faraway across the galaxy. It’s an old burned out corpse of a star named BPM 37093 located only about 50 lightyears away from Earth in a region of the sky referred to as the constellation Centaurus. The white dwarf is a chunk of crystallized carbon that weighs 5 million trillion trillion pounds. That would equal a diamond of 10 billion trillion trillion carats.

Lucy. After it was discovered in 2004, astronomers nicknamed the space diamond Lucy after the Beatles song Lucy In The Sky With Diamonds. Lucy, also known as BPM 37093 and V*886 Cen, is the 886th variable star in the constellation Centaurus.

Star of Africa. By comparison, the largest such precious stones on Earth are the 545-caret Golden Jubilee Diamond and the 530-carat Great Star of Africa. The Golden Jubilee Diamond was found in 1985 and is in Thailand’s Royal Palace as part of the crown jewels. The Great Star of Africa was found in 1905 and is in the Tower of London as part of the Crown Jewels of England.

White dwarf. A white dwarf is the hot cinder left behind when a star uses up its nuclear fuel and dies. It is made mostly of carbon and oxygen. and surrounded by a thin layer of hydrogen and helium gases. The Sun’s diameter is 870,000 miles (1.4 million km). Lucy is tiny at a mere 2,500 miles (4,000 km) diameter. The Sun is 109 times the diameter of Earth. Lucy is only about 2/3rds the size of Earth. That’s tiny for a star. However, Lucy’s mass is about the same as our Sun. That’s a lot of weight in a tiny ball.


What is Lucy? Lucy is the most massive pulsating white dwarf currently known. Like other white dwarfs, Lucy probably is composed mostly of carbon and oxygen created by the past thermonuclear fusion of helium nuclei. While Lucy is a dead star now, it used to shine like our Sun. Lucy is very dim now, shining with only 1/2000th of the Sun’s visual brightness. Lucy has a very thin atmosphere of hydrogen and helium. The atmosphere of our Sun is mostly hydrogen and helium. 

How do they know? Astronomers had suspected since the 1960s that the interiors of white dwarfs would be crystallized and Lucy seems to confirm that. In its death struggles, the core of a star like Lucy or our own Sun becomes exposed and slowly cools down over time. Such a star begins to pulsate when the core surface temperature drops to about 12,000 degrees. By comparison, the Sun’s core temperature now is about 27,000,000°F (15,000,000°C). Its surface temperature is about 11,000°F (6,000°C).

Lucy pulsates like a giant gong. Its internal pulsations are something like seismic waves inside Earth. Astronomers measured the pulsations to figure out Lucy’s carbon interior was solidified (crystallized). Astronomers measured the pulsations hidden in Lucy’s interior in the same way geologists use seismographs to measure earthquakes inside Earth.

Where to look. Lucy is not visible from Earth with the unaided eye. It must be viewed with a telescope and is best seen from Earth’s Southern Hemisphere during March-June.

Read the full article at:

National Academies: Illustrating the Impact of Mathematics on Other Science Disciplines

Today’s mathematical research, both pure and applied, is paving the way for major scientific, engineering, and technological breakthroughs. Cutting-edge work in the mathematical sciences is responsible for advances in artificial intelligence, manufacturing, precision medicine, cybersecurity, and more. Find out how the mathematical sciences are helping to improve our everyday lives by checking out the stories and infographics below.


This series of illustrations shows how advances in the mathematical sciences anticipate and enable later technologies that profoundly impact our daily lives, including life-saving advances in medical imaging and treatment, predictive traffic-avoiding routing, communications advances enabling GPS and high-speed cellular communications, safer online commerce with cryptographic security protocols, development of novel materials based on advanced simulations, improved forecasting of extreme weather events, and much more.

The leaps forward in technology have often built upon theoretical work whose impact would not have been predicted at the time of their creation. The same is true today: researchers and practitioners in the mathematical sciences continue to innovate, and we can only begin to imagine the future inventions their work will enable. Mathematical and statistical advances are playing a key role in emerging areas such as cyber warfare, quantum computing, artificial intelligence and machine learning for automation, genetic sequencing and related advances in vaccine creation to fight novel and existing viruses, and supply chain management.

The increasing pace of technological and social development will require many more advances in the mathematical sciences because they are a foundation for advances across science, medicine, business, finance, and even entertainment. New discoveries in mathematics happening today will reverberate for decades and centuries to come.

Read the full article at:

Read the full article at: