Machine learning spots natural selection at work in human genome

Pinpointing where and how the human genome is evolving can be like hunting for a needle in a haystack. Each person’s genome contains three billion building blocks called nucleotides, and researchers must compile data from thousands of people to discover patterns that signal how genes have been shaped by evolutionary pressures.

 

To find these patterns, a growing number of geneticists are turning to a form of machine learning called deep learning. Proponents of the approach say that deep-learning algorithms incorporate fewer explicit assumptions about what the genetic signatures of natural selection should look like than do conventional statistical methods.

 

 

Sourced through Scoop.it from: www.nature.com